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Abstract When insoluble insulating crystals adhere to
an electrode, the three-phase junction ± where electrolyte
solution, electrode and crystal meet ± is the only feasible
site for an electrochemical reaction. Moreover, sustained
reaction is possible only if ions from the electrolyte
solution are able to enter the crystal through the three-
phase junction and disperse within the crystal. Here,
order-of-magnitude calculations demonstrate that dif-
fusion to the three-phase junction is well able to support
voltammetry under standard experimental conditions. A
model is built for cases of adherent cubes of uniform size
and thereby the shapes of chronoamperograms,
chronograviograms and cyclic voltammograms are pre-
dicted. The model assumes that the ion concentration at
the three-phase junction plays a crucial role in the vol-
tammetry, being determined by quasi-steady-state ion
di�usion from the bulk, the thermodynamics of the
electrode reaction, and the extent to which the crystal
has already undergone reaction. Depending on the
crystal size and scan rate, cyclic voltammograms may
mimic solution-phase voltammograms from classical
thin-layer experiments or from typical stripping experi-
ments. The e�ect of size heterogeneity on cyclic volta-
mmetry is simulated for lognormal distributions.
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Introduction

In the last few years has come the realization that in-
formative voltammetry may be feasible for systems in

which a solid rests upon, or adheres to, an electrode,
provided that the solid is reducible or oxidizable [1±12].
Because any electrode reaction requires, in addition to
the electroactive species itself, a source or sink of elec-
trons and a source or sink of ions, it appears likely that
the three-phase junction, the line where all the ingredi-
ents meet, may play a vital role in the voltammetry of
solid insulators. For example, in the model recently
proposed by LovricÂ and Scholz [13] the three-phase
junction is crucial.

It is therefore of interest to determine the extent to
which di�usion can supply ions to, or remove them
from, a three-phase junction. On the face of it, one could
easily imagine that this process, involving as it does the
passage of ions through a bottleneck of atomic dimen-
sions, would be incapable of supplying a voltammetric-
ally signi®cant current.

Here a series of order-of-magnitude calculations is
presented to throw light on three questions: ``How much
electric current can di�usion to a three-phase junction
sustain?'', ``Will such currents be of a magnitude, and be
sustained long enough, to be within voltammetrically
accessible ranges of current and time?'' and ``If so, then
what shapes will voltammograms possess when the
electrochemistry is mediated by a facile reaction at the
three-phase boundary?''.

Though the details of the chemistry are rather un-
important in the present study, it will be assumed, for
the sake of de®niteness, that, in the presence of a suit-
able univalent cation, each unit of the solid can undergo
a one-electron reduction process:

O�solid� � C��solution� � eÿ�electrode� ! �RÿC���solid� �1�
Each of the three species on the left-hand side of this
equation originates in a distinct phase. The model used
here does not address the intriguing and important
question of how, once inside the crystal, the cations
spread throughout the available space as reduction
proceeds. This spreading is assumed to take place so
readily that the composition is always uniform
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throughout the crystal, and to cease only when ther-
modynamic equilibrium is attained or when all the O
centres have been reduced.

Recognize that, in the absence of electronic conduc-
tion, R) centres cannot be formed in the body of the
solid, nor can they exist anywhere without the presence
of a nearby cation or electron hole. The easy mobility of
the desolvated cations in the solid is a necessary feature
of the present model, but the negative charges are as-
sumed to migrate, not by the motion of the centres
themselves, but by a hopping process involving charge
transfer to an adjacent centre:

Rÿ�solid� �O�solid� ! O�solid� �Rÿ�solid� �2�
Some models of solid voltammetry imagine that cat-

ions can enter through the entire two-phase solution/
crystal interface, being countered by negative charges
hopping along the outermost plane of the solid. Though
such a mechanism is not unlikely, it is not incorporated
into the present model. Indeed, it must be admitted that
the model treated here is more of a limiting case than a
credible treatment of a realistic experiment. Notwith-
standing its limitations, this treatment is of value in
demonstrating that the role of the three-phase junction
must not be overlooked in modelling the voltammetry of
solids.

Other systems to which the present model might
conceivably apply include cases in which the C+ cation
is itself reduced to a neutral species C which then
undergoes facile dissolution in the solid, which plays no
chemical role in the electrochemistry. Yet again, a
similar model might apply if the solid were replaced by
an organic solvent and the aqueous phase contained the
bromide ion. An electron-transfer reaction, an oxida-
tion in this case, might then occur solely at the three-
phase junction between the two liquid layers and a
metal, producing bromine which dissolves in, and
rapidly di�uses through or reacts avidly with, the
organic phase.

The diffusion problem

One of the simplest pertinent geometries, lending itself
to a (z, r, h) set of cylindrical coordinates, is that shown
in Fig. 1. The three-phase junction lies along the z-axis,
perpendicular to the paper, and is modelled as if it were
of in®nite extent. Electrolyte solution occupies the seg-
ment 0 < h <Q of the angular coordinate. This solu-
tion contains the ion C+ of interest, initially at a
uniform concentration cb, together with su�cient sup-
porting electrolyte to inhibit migration and nullify
ohmic polarization. Generally Q is modelled as p/2, and
this choice was made in drawing Fig. 1. The wedge of
solution is bounded on one face by the electrode and on
the other face by the crystal. The radial coordinate r is
unbounded in the model.

It may be said that a di�using species has ``reached''
the three-phase junction when it has come within a
distance a of that junction, where a is of atomic di-
mensions. The di�usivity of the ion C+ will be denoted
by D. This ion's dimensions are assumed small in com-
parison to a, being therefore ignored. Our interest will be
restricted to the case in which ions that reach the r� a
surface enter the crystal and are drawn into the crystal
so e�ciently that the C+ concentration at the three-
phase junction has a value, cj, that responds only to the
electrode potential and to the conditions within the
crystal, being initially equal to the bulk concentration cb.

With the above assumptions, the system obeys the
cylindrical version of Fick's second law:

o2c
or2
� 1

r
oc
or
� 1

D
oc
ot

�3�
from which the z and h derivatives have been omitted on
account of symmetry. We ®rst seek a solution to this
equation subject to the initial condition

c � cb r > a t � 0 �4�
plus the two boundary conditions:

c! cb r!1 t � 0 �5�
and, with cj symbolizing the concentration of C+ at the
three-phase junction,

c � cj r � a t > 0 �6�
With �c being the transform of c, and s being the
``dummy'' variable of transformation, Laplace trans-
formation of Eq. 3 gives

d2�c
dr2
� 1

r
d�c
dr
� �cs

D
ÿ cb

D
�7�

after the initial condition [4] is incorporated. The general
solution to this second-order ordinary di�erential
equation requires two arbitrary functions P and P1 of s
and is

�c � cb

s
� PfsgK0

�
r

����
s
D

r �
� P1fsgI0

�
r

����
s
D

r �
�8�

Here K0{ } and I0{ } are the zero-order instances of the
Basset and hyperbolic Bessel functions, respectively.

Fig. 1 Solution occupies a wedge of solution bordered on one face by
the electrode and on the other face by the solid insulator
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Because the latter function approaches in®nity as its
argument increases, condition [5] demands that P1{s} be
zero. To identify the other constant requires that the
temporal behaviour of the concentration cj of the C+

ions at the three-phase junction r� a be speci®ed. First,
the case in which this concentration is constant will be
examined.

Current for constant junction concentration

When cj is a constant in Eq. 6, the Laplace transform �c
acquires the value cj/s at r� a and therefore Eq. 8 leads
to

Pfsg � ÿ�c
b ÿ cj�

sK0

�
a
���
s
D

p 	 �9�

after P1{s} is equated to zero. Thus, in the Laplace do-
main, the appropriate solution is

�c � cb

s
ÿ �c

b ÿ cj�K0

�
r
���
s
D

p 	
sK0

�
a
���
s
D

p 	 �10�

Our interest is in the concentration gradient ¶c/¶r at the
three-phase junction r� a. The Laplace transform of this
derivative follows from di�erentiation of Eq. 10 with
respect to r, and is

d�c
dr

� �
r�a
� �c

b ÿ cj�K1

�
a
���
s
D

p 	������
sD
p

K0

�
a
���
s
D

p 	 �11�

where K1{ }denotes the Basset function of unity order.
The Laplace inversion of this equation requires recourse
to the Bromwich integral. Following classical procedures
[14], developed in the context of heat conduction, one
®nds

dc
dr

� �
r�a
� 4�cb ÿ cj�

p2a

Z1
0

exp
� ÿDtk2

a2
	
dk

k�J20fkg �Y2
0fkg�

�12�

where Y0{ } and J0{ } are the zero-order instances of the
Neumann and Bessel functions, respectively. The inte-
gral in Eq. 12 is a function of the dimensionless quantity
s�Dt/a2 and it is convenient to represent this integral,
after multiplication by 4/p2, as a function symbolized
G(s). That is:

G�s� � 4

p2

Z1
0

exp
�ÿsk2

	
dk

k�J20fkg �Y2
0fkg�

�13�

This function has been evaluated numerically, but for
su�ciently short times it is given asymptotically by

G(small s�� 1�����
ps
p � 1

2
ÿ 1

4

���
s
p

r
� 1

8
sÿ 25

96

�����
s3

p

r
� 13

64
s2ÿ� � �

�14�
where s�Dt/a2 as before. Alternatively it is given by

G(large s� � 2

lnf4sg ÿ 2c
ÿ 2c

�lnf4sg ÿ 2c�2

ÿ 2:624

�lnf4sg ÿ 2c�3�
1:033

�lnf4sg ÿ 2c�4 � � � � �15�

at su�ciently long times [15]. In Eq. 15, c� 0.57722... is
Euler's constant. Values of G(s) are listed in Table 1, for
a very wide range of s values. In compiling this tabula-
tion, Eqs. 14 and 15 provided the data for extreme values
of s, while the intermediate entries were obtained, with
somewhat less precision, from the literature [16].

By Fick's ®rst and Faraday's laws, the current density
arising from the entry of the univalent ions through the
three-phase junction has a magnitude

i � ÿFD
dc
dr

� �
r�a
� ÿFD�cb ÿ cj�

a
G�s� �16�

where F is Faraday's constant and the negative sign re-
¯ects the IUPAC convention regarding reductive cur-
rents. In the case of interest, a2/D is about 1 ns, so s
values of voltammetric relevance are in the range
107<s<1011, for which Eq. 15 is amply valid. Indeed,
for many purposes the G(s) function could be approxi-
mated by the single term 2/[ln{4s} ) 2c], so that

i � ÿFD�cb ÿ cj�
a lnfg �����

Dt
p

=ag �17�

where g� 2 exp{±c}� 1.123....
The g term in the last paragraph is the usual areal

current density, with the A m)2 unit, but more pertinent
in the present context is the lineal current density i, with
the A m)1 unit. This can be found by multiplying i by
the length Qa of the arc through which the ions are
considered to enter, and therefore

Table 1 Values of the time-dependent function to which the three-
phase-junction current is proportional. The integral of this function
is tabulated in the third column

s G(s)
R s
0 G�s� ds

1.0� 10)5 179 0.00357
1.0� 10)4 56.9 0.0113
1.0� 10 )3 18.3 0.0357
0.010 6.10 0.118
0.10 2.15 0.404
1.0 1.00 1.58
10. 0.54 7.44
1.0� 102 0.35 43.2
1.0� 103 0.26 294
1.0� 104 0.199 2.21� 103
1.0� 105 0.162 1.76� 104
1.0� 106 0.127 1.47� 105
1.0� 107 0.110 1.25� 106
1.0� 108 0.104 1.10� 107
1.0� 109 0.0928 9.74� 107
1.0� 1010 0.0839 8.76� 108
1.0� 1011 0.0765 7.95� 109
1.0� 1012 0.0703 7.29� 1010
1.0� 1013 0.0662 6.72� 1011
1.0� 1014 0.0605 6.24� 1012
1.0� 1015 0.0566 5.82� 1013

369



õ � HFD�cb ÿ cj�G�s� � ÿHFD��cb ÿ cj�
lnfg �����

Dt
p

=ag �18�

the approximation being valid at times of experimental
interest. Notice that, because a enters Eq. 18 only as
part of the logarithmic argument, the lineal current
density is rather insensitive to the value selected for a.
This is a fortunate circumstance because the need to
attribute a value to this rather intangible quantity is one
of the frailties of the model.

The weak inverse logarithmic dependence of the
current density on time, for all periods of voltammetric
signi®cance, implies that the current is almost at steady
state throughout any practicable experiment. For an a2/
D value of one nanosecond, for example, Table 1 shows
a current decline of less than 18% between t � 1 s and
t � 100 s, in contrast to the 90% decline predicted by
the Cottrell equation for the same time interval. Of
course, at short enough times, cottrellian behaviour is
predicted but, as the early entries in Table 1 con®rm, the
duration of this behaviour is so brief as to be totally
insigni®cant. It appears that di�usion currents at three-
phase junctions are quasi-steady under any conditions
likely to be encountered electrochemically.

To apply Eq. 18 to voltammetric practice, we need to
estimate the length of the three-phase junction. Let it be
supposed that the electroactive solid has a total volume
V and consists of isolated, uniformly sized cubes of edge
length L, each cube resting on the electrode via one of its
faces. The number of cubes would be V/L3 and the total
length of the three-phase junction would be 4V/L2.
Multiplication of Eq. 18 by this quantity gives a total
current of

I � ÿ2pFDV �cb ÿ cj�G�s�
L2

� ÿ2pFDV �cb ÿ cj�
L2 lnfg �����

Dt
p

=ag �19�

after Q is replaced by p/2.
As expected, Eq. 19 shows that the state of subdivi-

sion of the crystalline substance, re¯ected in the L pa-
rameter, is the predominant determinant of the
magnitude of the total current. The current is less sen-
sitive to the other parameters, for which we therefore
adopt the following constant values, all of which are
experimentally realistic:

a � 1:0� 10ÿ9 m

D � 1:0� 10ÿ9 m2 sÿ1

t � 10: s

cb � 1:0molmÿ3

cj � 0:5molmÿ3

G � 0:10

V � 1:0� 10ÿ11 m3

T � 298K

M � 0:20 kg molÿ1

q � 2:0� 103 kg mÿ3

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

�20�

This listing includes assumed values for the thermo-
dynamic temperature T, the molar massM and density q
of the solid, quantities that will not be needed until later.
The signi®cance of G will be explained in a subsequent
section. Table 2 shows values of the current, calculated
from Eq. 19 using the constant parameters listed in
Eq. 20, for a number of di�erent values of L. The col-
umn headed ``#'' lists the number of cubes present, ac-
cording to the model. The signi®cance of the fourth
column will be evident later.

This table con®rms that voltammetrically signi®cant
currents can ¯ow into an adherent electroactive solid,
via the three-phase junction, especially if the crystals
from which the solid is formed are su�ciently small,
separated and numerous. Indeed, some of the entries
towards the bottom of the table are astonishingly large.
However, as will be evident from the next section, these
large currents are unrealistic in that currents of these
magnitudes cannot be sustained for the 10 s assumed in
the calculation.

Charge for constant junction concentration

If it is assumed that the molar mass, density and volume
of the solid have the values listed in Eq. 20, then the
total charge required to reduce the entire solid deposit is

Qmax � ÿFV q
M

� ÿ9:6mC �21�

Therefore, even if the junction concentration were to
remain constant, it is evident that the worst-case current
listed in Table 2, namely ±26 mA, could endure for only
0.37 s before the solid was completely converted to the
reduced form. In practice, the junction concentration
would rise towards cb soon after this, eventually shutting
o� the current.

These considerations reveal the need to investigate
not only how the current changes, but the charge-versus-
time function also. This cannot convincingly be ac-
complished simply by integration of Eq. 19 because that
result is valid only at long times, whereas a signi®cant
fraction of the charge may be passed soon after t� 0.

Table 2 Dependence of current I on the edge length L of the crystal
cubes

L �lm� # )I tmin (s)

464 1 1.2 nA 3.4 ´ 106

215 10 5.6 nA 7.4 ´ 105

100 100 26 nA 1.6 ´ 105

46 103 0.12 lA 3.4 ´ 104

22 104 0.56 lA 7.4 ´ 103

10. 105 2.6 lA 1.6 ´ 103

4.6 106 12 lA 340
2.2 107 56 lA 74
1.0 108 0.26 mA 16
0.46 109 1.2 mA 3.4
0.22 1010 5.6 mA 0.74
0.10 1011 26 mA 0.16
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To express the areal charge density, Eq. 16 is inte-
grated with respect to time:

q �
Zs

0

i ds � ÿF �cb ÿ cj�a
Zs

0

G�s� ds �22�

Multiplication by pa/2 converts this areal charge density
into a lineal charge density and thence further multi-
plication by the junction length 4V/L2 produces the total
voltammetric charge

Q � ÿ2pFV �cb ÿ cj�a2
L2

Zs

0

G�s� ds �23�

Values of the integral in Eq. 23 were included in Table 1.
Early values in this listing were calculated from the ex-
pressionZs

0

G(small s� ds � 2

���
s
p

r
� s
2
ÿ 1

6

�����
s3

p

r
� s2

16

ÿ 5

48

�����
s5

p

r
� 13

192
s3 ÿ � � � �24�

which arises by integration of the asymptotic expansion
[14]. Intermediate values resulted from numerical inte-
gration of literature data [16]. Later values were found
by exploiting the following inde®nite integral of Eq. 15:

Z
G(large s� ds � ÿ0:2943 lifg2sg � 2:294s

lnfg2sg
� 1:140s

ln2fg2sg ÿ
0:3443s

ln3fg2sg � � � � �25�

where g2 � 4 exp{±2c}� 1.26094 and li{ } denotes the
logarithmic integral function. Recognize that, in the
present context, ``large s'' may correspond to experi-
mental times of no more than 1 ls! At su�ciently large
values of s it becomes possible to employ an asymptotic
expansion of the logarithmic integral [17] and discard all
but the ®rst two terms in that expansion. Under those
conditions one has

Zvery large s

0

G(large s� ds � s

�
1:923

lnfg2sg �
0:769

ln2fg2sg

ÿ 0:72

ln3fg2sg � � � �
�

�26�

and this expression was used to calculate the later values
in the ®nal column of Table 1.

Notice in Table 1 that, for large s values, the listed
integral of G(s) with respect to s is very nearly equal to
the sG(s) product. Such an equality would be exact only
if G were a constant, which serves to underline the near-
constancy of G in this quasi-steady region. If we retain

only the leading term in the expansion of Eq. 26, this
leads to

Q � ÿ2pFV �cb ÿ cj�Dt

L2 lnfg �����
Dt
p

=ag �27�

which, in this degree of approximation is, in fact, equal
to t multiplied by Eq. 19 for I.

The derivations in this and the previous section were
made assuming that cj is a constant and the results are
valid only in that circumstance. Subsequent develop-
ment will be directed toward removing that restriction.

Thermodynamic considerations

The activity of R)C+ pairs will re¯ect the extent of re-
duction and therefore be proportional to Q. Likewise,
the activity of unreduced O centres will be proportional
to Qmax ) Q. When the solution/electrode/crystal sys-
tem is at thermodynamic equilibrium, the ratio of these
activities will re¯ect the electrode potential through a
nernstian relationship, namely

E � E1=2 � RT
F

ln

�
Qmax ÿ Qeq

Qeq

�
�28�

where the eq subscript on the Q symbol emphasizes that
this is the charge that would be necessary to bring the
system to equilibrium at potential E. Here R is the gas
constant and E1/2 is the potential that will cause the
crystal to be 50% reduced.

Just as increasing the activity of electrons (i.e. making
the potential more negative) favours reduction, so does
increasing the activity of C+ (i.e. increasing the con-
centration cj of cations at the three-phase junction).
Equation 2 emphasizes the parallel roles played by
electron activity and cation activity in fostering the re-
action. At equilibrium, we have cjeq � cb and therefore
the value of E1/2 must re¯ect the magnitude of c

b, the
bulk concentration of C+ cations. It is reasonable to
posit a nernstian dependence, namely

E1=2 � E0 � RT
F

ln

�
cb

c0

�
�29�

of E1/2 on cb, E0 being a standard (or conditional) po-
tential while c0 is the standard thermodynamic concen-
tration (103 mol m)3).

Rearrangement and combination of Eqs. 28 and 29
leads to

c0 Qeq exp
F �EÿE0�

RT

n o
Qmax ÿ Qeq

� cb � cjeq �30�

an equation which prescribes an interrelationship, valid
at equilibrium, between three variables: cj, E and Q. It
will now be postulated that the same relationship,
namely
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c0Q exp F �EÿE0�
RT

n o
Qmax ÿ Q

� cj �31�

also holds out of equilibrium. This is equivalent to
treating the voltammetry as reversible. A more conve-
nient expression results from combining Eqs. 31 and 29
into

cj �
cbQ exp

F �EÿE1=2�
RT

n o
Qmax ÿ Q

�32�

By establishing an expression for the concentration of
di�using ions at the three-phase junction, this expression
opens the way for predicting the voltammetric behaviour
of systems whose electrochemistry is supported by that
junction.

General voltammetric relationship

The quantity a2/D can be considered the ``time con-
stant'' for di�usion towards (or from) the three-phase
junction. With a magnitude of the order of nanoseconds,
this time constant is insigni®cant in comparison with
voltammetric times. This means that the faradaic current
I can adjust immediately to changes in the junction
concentration cj, so that Eq. 19

I � ÿ2pFV �cb ÿ cj�DG�s�
L2

�33�

which was derived on the assumption that cj is constant,
may be taken to apply even when the concentration of
C+ at the three-phase junction in varying. Moreover,
little error is introduced by treating G(s) as a constant,
because times of voltammetric interest rarely lie outside
the range of 10�2 s, which translates approximately to
107<s<1011 and thence via Table 1 to 0.12>
G(s)>0.078. Accordingly, a constant value equal to 0.10
and symbolized G will be ascribed to G(s); this value was
already listed in [20]. The imposition of this approxi-
mation permits the expression

cj � cb � L2I
2pGFVD

�34�

to be derived from Eq. 33.
Notice from Eq. 34 that the maximum permissible

magnitude of a reductive current, attained when cj is
zero, is given by

Imax � ÿ2pGFVDcb

L2
�35�

Anodic currents can have a larger magnitude, however,
because cj has no theoretical upper limit.

The quotient Qmax/Imax is a characteristic time which
we can denote as tmin, since it represents the minimum
time in which total reduction can be e�ected. It is given
by

tmin � qL2

2pGMDcb
�36�

A column listing calculated values of tmin, for the stan-
dard values listed in Eq. 20 and for various edge lengths
L, has been added to Table 2. Times typical of
voltammetric experiments are encountered in this
column when L is of the order of a few micrometres.

To abbreviate the algebra, it is useful to replace the
dimensional variables I, t and Q by the dimensionless
equivalents

Î � I
Imax

� ÿL2I
2pGFVDcb

�37�

t̂ � t
tmin
� 2pGMDcbt

qL2
�38�

and

Q̂ � Q
Qmax

� ÿMQ
FV q

�39�

The last has a very simple interpretation: it equals the
fraction of the solid insulator that is oxidized at time t.
Another abbreviation that it will be convenient to use is

n � exp

�
F �E ÿ E1=2�

RT

�
� exp

�
E ÿ E1=2

25:7 mV

�
�40�

These newly de®ned quantities enable Eqs. 32 and 34 to
be written succinctly as

cj

cb
� nQ̂

1ÿ Q̂
�41�

and

cj

cb
� 1ÿ Î � 1ÿ dQ̂

d̂t
�42�

respectively.
Equations 41 and 42 may now be combined into the

di�erential equation

dQ̂
d̂t
� 1ÿ nQ̂

1ÿ Q̂
�43�

This equation is a general result, obeyed by any voltam-
metric experiment that satis®es the assumptions of the
model.

Potential-step chronoamperometry

In potential-step chronoamperometry, E is held constant
for all t >0, and therefore so is n. Despite the simpli®-
cation that this brings to Eq. 43, that equation cannot be
integrated to give Q̂ as an explicit function of t̂. How-
ever, an analytic result that can be achieved, and which
is almost as useful, is to obtain t̂ as an explicit function
of Q̂. That result is
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t̂ � Q̂
1� n

ÿ n

�1� n�2 ln
�
1ÿ �1� n�Q̂	 �44�

By combining Eqs. 43 and 44 it is then possible to ex-
press the dimensionless time as an explicit function,
namely

t̂ � 1ÿ Î

�1� n��1ÿ Î � n� �
n

�1� n�2 ln
�
1ÿ Î � n

nÎ

�
�45�

of the dimensionless current. The integrations that led to
these results assumed that the potential was su�ciently
positive initially that no reduction was occurring or had
occurred previously.

Figure 2 displays a number of chronoamperograms
predicted by Eq. 45. Notice that their shapes are quite
unlike the current-time curves traditionally observed in
solution voltammetry. The current commences at a ®nite
value (namely Imax), then slowly declines in magnitude
almost linearly (with a slope proportional to ±n). By
times in the vicinity of tmin, however, the solid phase is
almost as saturated with R±C+ as the prevailing po-
tential will allow, and the current declines rapidly to-
wards zero.

Figure 3 displays the corresponding chronocoulo-
grams, calculated via Eq. 44. Their shapes are very much
as expected from the model. Under strong polarization,
the charge rises as rapidly towards Qmax as the quasi-
steady current will allow. With weaker polarization, the
charging is slower and incomplete. The graphs in this
Figure also serve as chronograviograms, indicating how
the mass of the adherent solid changes with time as
cations become incorporated into the lattice. The
equality

Dm � MCQ
F

�46�

serves to convert charge Q into mass increment Dm, with
MC being the molar mass of the cation.

Simultaneous (quartz microbalance) gravimetry and
voltammetry [18±21] have shown promise of providing
greater insight into solid-state electrochemistry than ei-
ther technique on its own could achieve.

Cyclic voltammetry

Though it may not prove to be the most revealing way of
investigating adherent solids, electrochemists have a
predilection for this quite complicated voltammetric
technique. Even without the bene®t of mathematics, it is
evident that the shapes of cyclic voltammograms pre-
dicted by the present model will fall into two di�erent
classes according as tmin is much greater than, or much
smaller than, the ``traversal time'' of the experiment.
There will be an intermediate regime if these two char-
acteristic times are comparable. The ``traversal time'' is
the time taken to cycle through the crucial potential

region where electrochemistry ¯ourishes and will be of
the same order of magnitude as the reversal time tr,
which is the duration of the forward sweep.

In reductive cyclic voltammetry, a potential-versus-
time signal obeying the

E � Er � mjt ÿ trj �47�
relation is imposed on the electrode, where v is the un-
signed scan rate and Er is the reversal potential. The
initial potential, imposed at and before t� 0, is arbitrary
provided that it is su�ciently positive to cause the initial
extent of reduction of the solid, Q̂t�0, to be negligible.
Our model is already overburdened with adjustable pa-
rameters and so, to avoid introduction of others, let it be
mandated that the cyclic experiment starts at a potential

Fig. 2 Chronoamperograms for potential steps a to the potential
E1=2, b to 50.0 mV more negative than E1=2, c to 100.0 mV more
negative than E1=2 and d to 200.0 mV more negative than E1=2. The
time and current axes have been normalized by the quantities
de®ned in Eqs. 36 and 35, respectively

Fig. 3 Charge-versus-time curves for the experiments illustrated in
Fig. 2. The variables have been normalized by the constants
de®ned in Eqs. 36 and 37
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of 180 mV (i.e. seven RT/F units) more positive than
E1=2, reverses at Er�E1=2 ) 180 mV, and returns to its
starting value. This choice of a potential program cor-
responds to a suitably small value, namely 9.11´10)4, of
Q̂t�0, the initial extent of reduction. As elsewhere in this
article, the magnitudes listed in [20] (except the t value,
of course) are assumed unless otherwise stated.

It is customary in cyclic voltammetry to regard the
potential, rather than time, as the independent variable.
A suitably undimensionalized counterpart is

Ê � ÿF �E ÿ E1=2�
RT

� ln

�
1

n

�
�48�

and, with the experimental protocol speci®ed in the last
paragraph, this dimensionless potential takes values ±7
® 7 ® ±7. In terms of this variable, the general
voltammetric relationship, Eq. 43, becomes replaced by

�m̂
dQ̂

dÊ
� 1ÿ Q̂ expfÿÊg

1ÿ Q̂
�49�

where m̂ is the dimensionless sweep rate

� dÊ
d̂t
� m̂ � F mtmin

RT
� F mqL2

2pGRTMDcb
�50�

The upper/lower signs in the last two equations refer to
the forward/backward scans.

In the absence of an analytical solution to Eq. 49, this
equation was replaced by the di�erence equation

Q̂j�1 � Q̂j � d
m̂

�
1ÿ Q̂j exp

�ÿ7� j14ÿ jdj	
1ÿ Q̂j

�
�51�

and the current-versus-potential relationship was mod-
elled on the equation pair

Êj � 7ÿ j14ÿ jdj for j � 1; 2; 3; . . . ;
28

d
�52�

Îj � m̂
Q̂j�1 ÿ Q̂jÿ1

2d
for j � 1; 2; 3; . . . ;

28

d
�53�

with suitably small values of d. Results for a number of
scan rates are shown in Figs. 4 and 5.

Though m̂ was described as a dimensionless scan rate,
Eq. 50 shows that the linear dimensions of the crystals
have a stronger in¯uence on this parameter than has the
experimental v. For example, it requires only a 32-fold
increase in L to change the cyclovoltammetric behaviour
from that of the smallest m̂ example in Fig. 4 to that of
the largest m̂ example in Fig. 5.

For the most part, the cyclovoltammetric curves are
dissimilar to those familiar from solution-phase elec-
trochemistry. At the slowest scan rates depicted in
Fig. 4, the cyclic voltammograms have inversion sym-
metry about the origin and resemble their counterparts
for reversible thin-layer voltammetry [22]. They are also
similar to thin-layer cyclic voltammograms in having
peak heights that are proportional to scan rate. These

parallels are as expected because, in both experiments,
there is a limited amount of reduced material, all of
which can be reoxidized. Notice in these voltammo-
grams that the current is close to zero at the right-hand
side of each plot, corresponding to the most negative
electrode potentials. This is because the solid is then
totally reduced (Q�Qmax). The voltammogram for
m̂� 5.0 shows a precipitous drop as the last remaining O
centres are reduced.

When the dimensionless scan rate is as large as 10,
total reduction is delayed until after reversal, as evi-
denced by the location of the precipitous current fall in
Fig. 5. At faster scan rates still, total reduction is never
even approached under cyclovoltammetric conditions,
as is true for the majority of the curves in Fig. 5. At
these higher scan-rates, all trace of the inversion sym-

Fig. 4 Cyclic voltammograms for several rather slow scan-rates.
The number associated with each curve is the dimensionless scan-
rate m̂, as de®ned in Eq. 50. The potential and current axes portray
the dimensionless analogues of those variables, as de®ned in Eqs.
48 and 37, respectively

Fig. 5 Cyclic voltammograms for a range of scan-rates faster that
those encompassed by Fig. 4. Otherwise the design of the two
®gures is similar
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metry has been lost. Much higher anodic currents are
seen to ¯ow, but for correspondingly briefer periods
than during the cathodic regime. This is because, when
the electrode is cathodic, the junction concentration cj

can fall only as low as zero, whereas during anodization
it can rise to exceed cb many-fold. In other words, ions
can escape from a crystal through a three-phase junction
more rapidly than they can enter. This behaviour is
similar to that observed during classical stripping vol-
tammetry [23].

It has been convenient to develop the present model
in terms of dimensionless variables. Table 3 has been
constructed to re-establish contact with the experimen-
tally signi®cant variables of current, potential and scan
rate. The dimensionless scan rate is, however, also tab-
ulated so that a reader may associate the data in Table 3
with the cyclovoltammetric shapes portrayed in Figs. 4
and 5. One noteworthy feature of this table is that the
values of scan rate, current and potential are all emi-
nently accessible experimentally in cyclic voltammetry.
This feature might not have been as impressive had some
crystal edge length other than one micrometre been
chosen. This choice of edge length corresponds to a total
three-phase junction that is 40 m long! Increasing the
crystal size diminishes the current magnitude, for a given
volume of solid, and slows the timescale of the volta-
mmetric response.

Heterogeneity

A list of the assumptions and approximations that have
been incorporated into the present model would be very
long indeed. One of the least credible assumptions is the
treatment of the solid as a collection of cubes of uniform
size. Regarding the individual crystals as cubic may not
lead to too much mismatch with experimental reality,
but the assumption that these crystals all have the same
size is unreasonable for powdered materials in the un-
graded state in which they are normally encountered.

The voltammetric e�ects of heterogeneity can easily
be appreciated qualitatively. Because Qmax for each
crystal cube is proportional to L3, the cube of the edge

length, whereas Imax is proportional to L itself, the
characteristic time tmin corresponding to an individual
cube is proportional to its L2. Small crystals will there-
fore display a rapid response to an electrochemical
stimulus, whereas large crystals will respond sluggishly.
The overall behaviour will be a weighted hybrid of the
component responses. When cyclic voltammetry is the
experiment technique, one easily predicable e�ect of
replacing the uniformly sized crystals of the previous
model with a spectrum of sizes is that the ``precipitous
drops'' in current, seen in Figs. 4 and 5 for the m̂� 5 and
10 voltammograms, will disappear.

To model the e�ect of heterogeneity, it was deemed
appropriate to treat the cube edge lengths L as being
lognormally distributed. This implies that the density
distribution function is

f�L� � f2

2l
���������������
p lnffgp exp

�ÿln2�Lf3=l
	

4 ln
�
f
	 �

�54�

where l is the mean edge length and f is a dimensionless
parameter

f �
����������������
l2 � r2

p
l

�55�

exceeding unity and dependent on the variance r2 of the
distribution. The corresponding cumulative distribution
function is

F�L� � 1

2
� 1

2
erf

�
ln
�

Lf=l
	

2 ln1=2
�
f
	� �56�

Note that zero variance (so that f� 1) corresponds to
total homogeneity of crystal size. Otherwise, lognor-
mality is a markedly asymmetric distribution with a
median (which Eq. 56 shows to occur at L� l/f) and a
mode (which di�erentiation of Eq. 54 shows to occur at
L� l/f3) that are smaller than the mean l. A major
advantage of the adoption of this particular model is
that the assumption of lognormally distributed cube
edge lengths L implies that the cube volumes L3 also
have a lognormal distribution.

The signi®cance of Eq. 54 is that cubes of edge
lengths between L ) �dL and L+�dL contribute a

Table 3 Characteristics of representative cyclic voltammograms, when the scan reverses at 180 mV beyond the E1/2 potential

Scan rates Biggest chargea Cathodic peak Anodic peak

v (mV s±1) m̂ value potential current potential current potential

0.16 0.1 100% Er )15.2lA E1/2 ) 1.3 mV 15.2 lA E1/2+1.3 mV
1.6 1.0 100% Er )150. lA E1/2 ) 14.5 mV 150 lA E1/2+10.5 mV
16 10. 99.5% E1/2)137 mV no peak 1.4 mA E1/2+45.1 mV
160 100 18.5% E1/2+38 mV no peak 4.45 mA E1/2+117 mV
1600 1000 2.3% E1/2+96 mV no peak 5.75 mA E1/2+178mV

a ``Biggest charge'' signi®es the largest Q value attained during the
voltammogram, expressed as a percentage of Qmax, the maximum
possible charge; the corresponding potential is also reported. These
potentials, listed in the fourth column, are those at which the

biggest charge was attained and occur during the reverse scan.
Values listed in (20) were assumed, together with a crystal size of
L=1.0 lm.
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fraction f(L) dL of the total number of cubes and
therefore contribute 4f(L)L dL towards the total three-
phase junction length and f(L)L3 dL towards the volume
of solid insulator. The number of cubes is given by the
total volume V divided by the mean volume which, ac-
cording to the lognormal model, isZ1
0

f�L�L3 dL � �l
2 � r2�3

l3
� l3f6 �57�

Thus, V/l3f6 equals the total number of cubes. Ac-
cordingly, the three-phase junction has an overall length
of 4V/l2f6. Notice that as r ® 0, so that the distribution
approaches homogeneity, and the mean edge length l
tends towards the uniform edge-length L, this formula
reduces, as it should, to the length 4V/L2 used in for-
mulating Eq. 19. Notice also that the presence of het-
erogeneity reduces the junction length for a given
amount of solid. The reduction can be surprisingly large:
eightfold if r� l.

It was decided to exemplify lognormal heterogeneity
by choosing a mean edge length l of 2.00 lm, and a
variance given by r� 1.00 lm. With the same value,
1.00´11)11 m3, chosen previously for the total volume,
this leads to the following characteristics of the distri-
bution: median edge length of 1.789 lm; most probable
edge length of 1.431 lm; a total of 640 000 cubes, of
average volume �V � 1.5625´10±17 m3� (2.50 lm)3; and
an overall three-phase junction length of 5.12 m. In
these circumstances, there is no signi®cant voltammetric
contribution by cubes with L smaller than 0.1 lm or
larger than 100 lm. A weighted sum of as many as 1200
cyclic voltammograms, in which edge lengths L formed a
logarithmic sequence ®lling the 0.1 lm £ L £ 100 lm
range, was used to simulate the continuous distribution.
Each component was based on a batch of uniform cubes
with weights dictated by the lognormal distribution.
Figure 6 shows the results of superposing these com-
ponent voltammograms at a number of scan rates.

The ordinate of each curve in Fig. 6 is the sum of the
many components, each of which resulted from applying
Eqs. 52 and 53, with Q̂; Î and m̂ replaced respectively by
Q/Qmax, Itmin/Qmax and Fvtmin/RT, where tmin is given
by Eq. 36 and Qmax by

Qmax � ÿF qVL3f�L� dL
M �V

�58�

The shapes of these curves are, as expected, similar to
those in Fig. 5, but slightly ``smoothed'' by the hetero-
geneity and without ``precipitous drops''.

Conclusions

Experimentation with adherent solids is a demanding
task, primarily because of the virtual impossibility of
reproducing crystal arrays. This being so, semiquanti-
tative theoretical predictions, such as those contained in

this article, may be adequate for comparison with ex-
periment.

The three questions that were posed in the intro-
duction have been answered. Di�usion to a three-phase
junction can provide an adequate supply of ions to
permit classical voltammetric techniques to be applied,
within the time and current ranges traditionally used.
The supply of ions to and from the three-phase junction
is likely to be in a quasi-steady state during any elec-
trochemical experiment. If the voltammetry is reversible,
the response is predicted to be very dependent on the
degree of subdivision of the crystals and may display
similarities to traditional solution-phase thin-layer or
stripping voltammetries.

It should be appreciated that the conclusions of this
article relate to an electrochemical reaction which
requires the ingress of an ion into the crystal, as exem-
pli®ed in reaction [2]. Very di�erent reversible volta-
mmograms would be predicted for a reaction such as

�O�Aÿ��solid� ! R�solid� �Aÿ�solution� ÿ eÿ�electrode� �59�
which is accompanied by the egress of an ion through
the three-phase junction. The di�erences arise from the
occurrence of limiting concentration polarization in the
former case and its absence from the model in the latter
case.
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